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Summary

Prüfer domains are characterized by various properties regarding ideals and operations between them. In
this note we consider six of these properties. The natural generalization of the notion of Prüfer domain to
the case of a commutative ring with unit, not necessarily a domain, is the notion of arithmetic ring. We ask
if the previous properties characterize arithmetic ring in the case of a general commutative ring with unit.
We prove that four of such properties characterize arithmetic rings while the remaining two are weaker and
give rise to two different generalizations.
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Riassunto

I domini di Prüfer sono caratterizzati da varie proprietà riguardanti gli ideali ed operazioni fra essi. In questa
nota consideriamo sei di tali proprietà. La naturale generalizzazione della nozione di dominio di Prüfer al
caso di anelli commutativi con unità che non sono necessariamente domini è la nozione di anello aritmetico.
Ci chiediamo allora se le precedenti proprietà caratterizzino gli anelli aritmetici nel caso generale di anelli
commutativi con unità. Proviamo che quattro di tali proprietà caratterizzano gli anelli aritmetici mentre le
rimanenti due sono più deboli e danno luogo a due diverse generalizzazioni.

Parole chiave: anelli commutativi, ideali, domini

1 Introduction.

Prüfer domains are characterized by various properties regarding ideals and operations between
them. In particular we consider the following six properties for a domain A.

• 1) (I + J) : K = I : K + J : K

f or all I, J,K ideals o f A with K f initely generated

• 2) I ∩ (J + K) = I ∩ J + I ∩ K

f or all I, J,K ideals o f A
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• 3) I : J + J : I = A

f or all I, J f initely generated ideals o f A

• 4) I : (J ∩ K) = I : J + I : K

f or all I, J,K ideals o f A with J,K f initely generated

• 5) I · (J ∩ K) = I · J ∩ I · K

f or all I, J,K ideals o f A

• 6) (I ∩ J) · (I + J) = I · J

f or all I, J ideals o f A.

They are all equivalent and characterize Prüfer domains among the commutative rings with unit
wich are integral domains ( see [2] Th.25.2).

Now let A be a commutative ring with unit, not necessarily an integral domain. we say that
A is an arithmetic ring if, for all maximal ideal M, the set of ideals of AM is linearly ordered by
inclusion. This notion was introduced by J.P. Lafon in [1].
We ask if the arithmetic rings are characterized by the above properties among the commutative
rings with unit.
In this paper we prove that the conditions 1), 2), 3), 4) are equivalent and characterize arithmetic
rings. Moreover arithmetic rings satisfy condition 5) which in turn implies condition 6) (see
Section 2).

The rings satisfying condition 6) have been studied and characterized in [4] and called quasi-
arithmetic rings. In Section 3 we recall the result of [4] and give a more explicit characterization.

In Section 4 we characterize rings satisfying condition 5) while in Section 5 we give an ex-
ample of a ring satisfying 5) which is not arithmetic and an example of a ring satisfying 6) but not
5). Finally we consider the case of a noetherian ring.

All the proofs are elementary. All the rings we consider are commutative with unit; all the
basic notions and properties about commutative rings can be found in [3].

2 Arithmetic rings.

First we recall the definition of arithmetic ring.

Definition 1 Let A be a local ring and let M be its maximal ideal; we say that A is an arithmetic
ring if it satisfies one of the equivalent conditions:
i) the set of ideals of A is linearly ordered by inclusion,
ii) the set of principal ideals of A is linearly ordered by inclusion,
iii) for all x, y ∈ A, the ideal (x, y) is principal.

Let us prove the equivalence between i), ii) and iii). Clearly i) implies ii) and ii) implies iii).
Let us prove that iii) implies ii); put (z) = (x, y) and assume z , 0: we have z = ax + by, x = cz, y =

dz; if one between c or d is invertible, e.g. c invertible, we have (z) = (x) ⊇ (y); otherwise we have
c, d ∈ M and z = acz + bdz, i.e. (1 − ac − bd)z = 0; but 1 − ac − bd is invertible which implies
z = 0.
Finally we prove that ii) implies i); let I, J two ideals of A and assume they are not comparable;
hence there is x ∈ I, x < J and y ∈ J, y < I; since (x) and (y) are comparable we assume (x) ⊆ (y)
hence x ∈ J.

Definition 2 Let A be any ring; we say that A is an arithmetic ring if AM is arithmetic, for any
maximal ideal M.

Now we prove the following theorem.
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Theorem 1 Let A be a commutative ring with unit. Then the conditions 1), 2), 3), 4) are equivalent
and characterize arithmetic rings.

Proof. The proof is the same as in the case of a domain ( see [2] Th.25.2). We recall it for the sake
of completeness.
First we prove the equivalence between 1), 2), 3) and the condition:
(*) A is an arithmetic ring.
Since all conditions are local ( remember that I : J localize if J is finitely generated) we can assume
that A is a local ring.
If A is an arithmetic local ring the set of ideals is linearly ordered by inclusion, hence it follows
that the condition (*) implies all the others.
Now we consider the following weaker condition of 3):
3’) (x) : (y) + (y) : (x) = A f or all x, y ∈ A
and show that 3’) implies (*).
In fact, il A is a local ring with maximal ideal M, either (x) : (y) or (y) : (x) is not contained in M,
hence either (x) : (y) = A or (y) : (x) = A, i.e. either (y) ⊆ (x) or (x) ⊆ (y).
It remains to prove that 2) implies 3’) and that 1) implies 3’).
2)⇒3’). Let x, y ∈ A, we have

(x) ⊆ (x) ∩ ((x + y) + (y)) = (x) ∩ (x + y) + (x) ∩ (y)

hence x = λ+µ, where λ = ρ(x+y) and µ = σ(y); then x = ρ(x+y)+σ(y), i.e. (1−ρ)x = (σ+ρ)y;
this implies 1 − ρ = τ ∈ (y) : (x), moreover ρy = (1 − ρ)x − σy with σy = µ ∈ (x), hence
ρ ∈ (x) : (y); then (x) : (y) + (y) : (x) = A.
1)⇒3’). Let x, y ∈ A, we have

A = ((x) + (y)) : ((x) + (y)) = (x) : ((x) + (y)) + (y) : ((x) + (y)) = (x) : (y) + (y) : (x).

Now we prove the equivalence between conditions 4) and (*).
If A is any ring and I, J,K are ideals of A, we have I : (J ∩ K) ⊇ I : J + I : K; for the other
inclusion assume that A is an arithmetic ring and let M be any maximal ideal of A; we have

(I : (J ∩ K))M ⊆ IM : (J ∩ K)M = IM : (JM ∩ KM).

Since A is arithmetic we have JM ⊆ KM or KM ⊆ JM ; assume JM ⊆ KM: we have

IM : (JM ∩ KM) = IM : JM = IM : JM + IM : KM = (I : J)M + (I : K)M = (I : J + I : K)M

since J,K are finitely generated.
Finally assume condition 4) and prove that A is arithmetic or, equivalently, condition 3’). In fact,
for any x, y ∈ A,

A = ((x) ∩ (y)) : ((x) ∩ (y)) = ((x) ∩ (y)) : (x) + ((x) ∩ (y)) : (y) = (x) : (y) + (y) : (x).

The proof of theorem 1 is then complete.
It is easily seen, by localizing, that an arithmetic ring satisfies condition 5).
Finally we observe that condition 5) implies condition 6). In fact

(I + J) · (I ∩ J) = (I + J) · I ∩ (I + J) · J ⊇ I · J

and since the other inclusion is always true, the statement follows.
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3 Quasi-arithmetic rings.

In this section we study the rings satisfying condition 6). These rings were characterized in [4]
and called quasi-arithmetic rings. Here we give a more explicit description. More precisely we
prove the following theorem.

Theorem 2 Let A be a commutative ring with unit. Then the following conditions are equivalent:
i) A satisfies condition 6) i.e.

(I ∩ J) · (I + J) = I · J f or all I, J ideals o f A.
ii) For all maximal ideal M of A the ring AM satisfies the following condition:
for all x, y ∈ AM either xy = 0 or the ideal (x, y) is principal.
iii) For all maximal ideal M of A the ring AM satisfies the following condition:
for all x, y ∈ AM either (x, y)2 = 0 or the ideal (x, y) is principal.
iv) For all maximal ideal M of A the ring AM satisfies the following condition:
the set N of elements of AM with square 0 form an ideal of AM with N2 = 0 which is comparable
with any other ideal of AM, and AM/N is an arithmetic ring.

Rings satisfying the previous equivalent conditions are called quasi-arithmetic rings.
Proof of theorem 2. The equivalence between i), ii), iii) have been proved in [4]. Now we prove
that iii)⇔ iv) .
iii)⇒ iv) . Let x, y ∈ N and assume xy , 0, then (x) and (y) are comparable; suppose x = λy, then
xy = λy2 = 0, absurd. Then xy = 0, hence (x, y)2 = 0; this proves that N is an ideal and N2 = 0.
Let now x < N ; then x2 , 0 and x is comparable with every z ∈ N . If were x = µz then would be
x2 = µ2z2 = 0, absurd; hence z = λzx for all z ∈ N and then N ⊂ (x). We proved that every ideal
of AM not contained in N contains it.
Finally let x̄, ȳ two non zero elements of AM/N ; they are images of two elements x, y ∈ AM with
x2 , 0, y2 , 0; then (x), (y) are comparable and then also x̄, ȳ are comparable.
iv) ⇒ iii). Let x, y ∈ AM. If both are in N then since N2 = 0, is also (x, y)2 = 0; if x < N , y ∈ N ,
the (x) ⊃ N ⊇ (y); if both x, y are not in N then both contain N and since AM/N is an arithmetic
ring, (x), (y) are comparable. The prof of theorem 2 is then complete.

4 Rings satisfying condition 5).

In this section we study the rings that satisfy condition 5). These rings fom a class intermediate
between aritmetic and quasi-aritmetic rings. More precisely we prove the following theorem.

Theorem 3 Let A be a commutative ring with unit. Then the following conditions are equivalent:
i) A satisfies condition 5) i.e.

I · (J ∩ K) = I · J ∩ I · K f or all I, J,K ideals o f A.
ii) For all maximal ideal M of A the ring AM satisfies the following condition:
for all x, y ∈ AM either (x, y)2 = 0 and ann(x) = ann(y) or the ideal (x, y) is principal.
iii) A is quasi-arithmetic and for all maximal ideal M of A the ring AM satisfies the following
condition:
if N is the set of elements of AM with square 0 and x, y are two non comparable elements in N ,
then ann(x) = ann(y) .

Proof of theorem 3. ii) ⇒ iii). From ii) follows that A is quasi-arithmetic, moreover if x, y ∈ N
are non comparable elements is (x, y)2 = 0 since N2 = 0, hence ann(x) = ann(y).
iii)⇒ ii). Since A is quasi-arithmetic, for every maximal ideal M of A and for every two elements
in AM is (x, y)2 = 0 or the ideal (x, y) is principal. Moreover if (x, y)2 = 0 it is x, y ∈ N hence
either the ideal (x, y) is principal or ann(x) = ann(y).
i)⇒ iii). Since A satisfies 5) and 5) implies 6), A is quasi-arithmetic. Moreover if M is any maxi-
mal ideal of A and N is the set of elements of AM with square 0, let x, y are two non comparable
elements in N .
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Assume that ann(x) , ann(y) and assume that t ∈ ann(x) and t < ann(y), then xt = 0, yt , 0. Hence

ty = t(x + y) ∈ (t)(y) ∩ (t)(x + y) = (t)((y) ∩ (x + y)) by i)

hence ty = tu with u ∈ (y) ∩ (x + y). It follows u = λy = µ(x + y) and hence ty = tu = λty i.e.
(1−λ)ty and since ty , 0 follows that 1−λ is in the maximal ideal MAM and hence λ is invertible.
In the same way µ is invertible hence (u) = (y) = (x + y) and hence (y, x + y) = (x, y) is a principal
ideal.
iii) ⇒ i).Since i) is a local condition we can assume that A is local with maximal ideal M. For
I, J,K ideals of A we have to prove I · (J ∩ K) ⊇ I · J ∩ I · K since the other inclusion is always
true. If the ideals J,K are comparable the property is true, hence we can assume J,K ⊆ N . If also
I ⊆ N all product are zero hence the property is true. So we assume I ⊇ N .
We observe first that every element of I · J is of the form xy with x ∈ I, y ∈ J : in fact let
z =
∑n

i=0 xiyi be an element of I · J with xi ∈ I, yi ∈ J, i = 1 . . . n ; by induction we can suppose
n = 2 and x1y1, x2y2 different from zero; then x1, x2 are not in N , hence are comparable; assume
x2 = λx1 then z = x1y1 + λx1y2 = x1(y1 + λy2).
Now let u , 0 be an element of I · J ∩ I · K ; we have u = xy = x′z with x, x′ ∈ I, y ∈ J, z ∈ K .
Since x, x′ are not in N ( otherwise u = 0 ) they are comparable; assume x′ = µx ; hence
u = xy = xz′ where z′ = µz and y, z′ ∈ N , x < N .
Let us consider y − z′ = t; it is xt = 0 but xy , 0, hence x ∈ ann(t), x < ann(y) and by iii) the
ideal (t, y) = (y, z′) is principal; hence y and z′ are comparable. Assume z′ = ρy: is u = xz′ with
x ∈ I, z′ ∈ J ∩ K.
The prof of theorem 3 is then complete.

5 Final observations.

First we show that the three classes of rings we considered are all distinct. In fact we produce two
examples: one of a ring satisfying condition 5) which is not arithmetic (Example 1) and one of a
ring which is quasi-arithmetic and do not satisfies condition 5) (Example 2).

Example 1 Let A be the ring which is the quotient of the domain

k[[x]] + (y, z)k((x))[y, z]

where k is any field, with respect to the ideal (y, z)2; we can write A as

A = k[[x]] + y′k((x)) + z′k((x))

where y′, z′ are the canonical images of y, z respectively, and where we have y′2 = y′z′ = z′2 = 0.

A is a local ring whose maximal ideal is generated by x and has a chain

(x) ⊃ (x2) ⊃ · · · ⊃ N = (y′, z′).

A is not arithmetic since y′, z′ are not comparable, but it is easy to see that satisfies condition 5)
since it is quasi-arithmetic and all non zero elements of N have annihilator equal to N .

Example 2 Let A′ be the quotient ring of the ring A considered in Example 1, with respect to the
ideal (xy′).

A′ is quasi-arithmetic but does not satisfy condition 5) since, denoting by x̄, ȳ, z̄ the canonical
images of x, y′, z′ respectively, we have ann(ȳ) = (x̄, ȳ, z̄) while ann(z̄) = (ȳ, z̄).

As a final remark we consider the case of a noetherian ring.
Remark Let A be a noetherian ring. We have seen in [4] Proposition 2 that A is quasi-arithmetic
if and only if, for all maximal ideal M of A the local ring ring AM, whose maximal ideal is MAM,
is one of the following types:
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a) a D.V.R. ( Discrete Valuation Ring),
b) an artinian ring with MAM principal,
c) an artinian ring with (MAM)2 = 0.

We observe that, in cases a), b), the local ring AM is arithmetic since all ideals are powers of the
maximal ideal: this is well known in case a);
in case b) assuming that the maximal ideal is generated by (x), then, since AM is artinian, is xr = 0
for same positive integer r; now let I ⊆ (x) be an ideal and let t the least positive integer such that
xt ∈ I; it is easy to see that I = (xt).
In case c) the ring AM satisfies trivially condition 5).
In conclusion we can say that in the noetherian case the conditions 5) and 6) are equivalent.
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